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What’s risk?

The term “risk” is used differently in everyday life and in literature, depending on the
context:

In colloquial language: occurrence of “unfavourable” events with adverse
(economic) consequences.

Concise Oxford English Dictionary: “hazard, a chance of bad consequences, loss
or exposure to mischance”.

The standard “ISO 31000 - Risk Management” describes risk as the “effect of
uncertainty on objectives”.

Keywords: decisions, uncertainty, events, consequences.
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Climate risk

The Earth’s climate is changing: average temperatures rise, acute phenomena
such as heat waves and floods grow in frequency and severity, and chronic
phenomena, such as drought and rising sea levels, intensify.

First fundamental question: how can climate change impact socioeconomic and
financial systems across the world in the next decades?

Second fundamental question: which actions should be tackled in order to mitigate
climate change?

Climate change risk assessment involves formal analysis of the consequences,
likelihoods and responses to the impacts of climate change and the options for
addressing them.

In this lecture we will focus more on the impact of climate risk in financial systems.
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Climate risk in finance

Financial institutions face today a two-sided climate risk: a physical impact risk and a
policy risk .

Many possible catastrophic events are linked to climate change: fires (California
2018, Australia 2020), hurricanes, floods, and probably also pandemics like
Covid-19. These events may cause dramatic losses in different ways.

Across the world, we see a tightening of climate policies and regulations to shift
the economy away from fossil fuels. The restructuring is accelerated by the Paris
Agreement, which sets clear aspirations to limit global warming to 1.5 or 2 degrees
Celsius, and will affect all sectors and future investment patterns for global
financial capital.

Both physical and policy risks can result in real financial impacts to companies and
assets.
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So: we have to measure a given risk..

Kloman 1990: “risk management is a discipline for living with the possibility that
future events may cause adverse effects”.

Quantitative approaches to risk assessment often identify risk with the fluctuation
of a value variable.
Two kinds or approaches:

1 One-sided approaches: only consideration of “unfavourable” deviations
2 Two-sided approaches: consideration of both “favourable” and “unfavourable” deviations

Examples of risk measurement related to climate risk in finance:
an insurance company might want to assess the risk of big losses in most exposed
areas (i.e., Florida with hurricanes);
a bank might want to quantify its exposure to transition risk.
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A first approach to risk measurement in Financial mathematics

Let (Ω,F , P ) be a probability space.

X = {X random variable on (Ω,F , P ), with some integrability condition w.r.t. P}
X stands for the value of a financial position at the end of a given period (for
example, liquidation time of positions).

A risk measure ρ is a functional

ρ : X → R,

assigning a risk ρ(X) to the financial position represented by X.

In financial applications, a rational decision maker tries to find a position X ∈ X ,
with possibly some constraints, that minimizes ρ(X).
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Risk measures are defined either in relation to the financial position X or to the
loss L = −X.

This difference must be taken into account in practical work and when applying
results from the literature.

In this lecture, the risk for us will be usually given in terms of financial positions.
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Some examples of risk measures

In the examples below, E[·] denotes expectation with respect to P , i.e. E[X] =
∫

Ω
XdP .

Variance:
V ar(X) = E

[
(X − E[X])2] .

Normalized standard deviation:

σ̃(X) =

√
V ar(X)

E[X]
.

Intuition: random variables with a large expected value often have a large variance
or standard deviation

Semivariance:
V ar+(X) = E

[(
(E[X]−X)+)2] .

Note: only shortfalls X < E[X] are taken into account.

Value at Risk at level α ∈ (0, 1) of a financial position X:

V aRα(X) := inf{m ∈ R : P (X +m < 0) ≤ α}.

Interpretation: smallest amount of money (“risk capital”) that must be added to X
so that the probability of bankruptcy is ≤ α.
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But: are these risk measures appropriate for climate risk?

Problem: the climate change case illustrates particularly well a situation in which
the probabilistic model, i.e., the probability measure P , is neither explicitly given
nor can it be adequately approximated or inferred with the available data and
current scientific methods: deep model uncertainty.

These uncertainties arise from both the extreme complexity of the climatic system
and our inability to perfectly capture the way our socioeconomic system would
respond and adapt to climate change.

This is particularly the case when we consider situations with potential
catastrophic consequences, such as the collapse of the Atlantic thermohaline
circulation, the melting of the Antarctic ice sheet or the loss of the Amazon
rainforest. Such catastrophic events (also called tipping points) have not been
encountered in recent history, and therefore their likelihood of occurrence is
extremely difficult to assess.
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How to deal with this issue?

In view of this disagreement among experts or models, how should a rational
policy decision maker proceed?

If one follows the traditional subjective risk minimazation approach, one would
simply aggregate the models by averaging them into a single representative
model.

The problem with this approach is that the decision maker considers the resulting
aggregated model in exactly the same way as one would consider an equivalent
objective model representing a specific risk, and model uncertainty has therefore
no impact on the decision-making process.

Ellsberg (1961) showed through different experiments that the choices of
individuals cannot be rationalized under the traditional Bayesian expected utility
paradigm, and that individuals usually manifest aversion toward situations in which
probabilities are not perfectly known.
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Let’s start with an example: Ellsberg paradox

Urn with 90 balls: 30 red, 60 black OR white.
People have been required to answer the following questions:

1 do you prefer to receive 100$ when you:
a draw a red ball
b draw a white ball

2 do you prefer to receive 100$ when you:
a draw a red or black ball
b draw a white or black ball

Try to guess the most common answers..

(a) to point 1, (b) to point 2.

But why? Relying on utility theory, if you prefer red to white you also prefer [red or
black] to [white or black]!

Possible reason: people are averse to model uncertainty.

Let’s go more into details..
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Risk vs uncertainty (Knight, 1921)

There’s a difference between two types of “imperfect knowledge”:
1 risk (or measurable uncertainty)→ situations in which the distribution of the target

random variables is known;
2 Knightian, model, or not measurable) uncertainty→ the distribution of the target

random variables is not known. This is the case for many issues related to climate risk.

Think about the previous example: if you win when you draw a red ball, your
gamble is based on a distribution you know: P (win) = 1

3
. This is not the case if

you win when the white ball is drawn. Same thing for the second choice.

The example shows that people do no treat these kinds of uncertainty in the same
way: ambiguity (or model uncertainty) aversion.
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Model uncertainty and Financial mathematics

Standard procedure: modelling under the usual concept of “Risk”:
Tacit assumption: a fixed probability measure P , and thus the distribution of the
underlying random variables/sources of risk, is known.
Example in financial mathematics: we specify the dynamics of some stochastic
processes with respect to a fixed probability P and we price derivatives based on those
dynamics.

The assumption above is not realistic for climate risk (as well as in other fields of
finance).

Approach under model uncertainty: probabilities are unknown for financial market
events→ Increased awareness of the problems that can result from excessive
reliance on a specific probabilistic model is needed.
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Approach under model uncertainty

Instead of a reference measure P , consider a family P of possible probability
measures. Each element of P reflects a possible different model, which gives rise
to a different probability distribution.

Example: utility maximization under model uncertainty
S stochastic process with log-normal returns Rk, i.e.,

ST = S0e
R1+R2+···+RT .

Introduce a family of probability measures to express uncertainty about returns:

P := {Pµ|µ ∈ [a, b] and R1, R2, . . . , RT i.i.d. , Rk ∼ N (µ, σ2) under Pµ}.

The maximization of the expected utility of a financial position X involving S and a
risk-free asset can be achieved by

maximize inf
P∈P̃

EP̃ [u(X)], X ∈ X ,

u(·) utility function, X family of financial positions: maxmin approach.
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Model uncertainty and risk management

There are different possible ways to deal with model uncertainty in risk
management (and so in particular in the setting of climate risk).

A key idea is that risk measures should be robust with respect to model
uncertainty.

Accordingly, risk minimization should take model uncertainty into account.

In the next slides, we will see how to define robust risk measures and how to
include model uncertainty into a risk minimization problem.

The next section is based on the paper Robust Preferences and Convex Measures
of Risk, Föllmer and Schied, 2002.
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Motivation

At the turn of the millennium, the weaknesses of Value at Risk led to the
development of an axiomatic theory of risk measures:

P. Artzner, F. Delbaen, J.-M. Eber, D. Heath, Coherent measures of risk, Mathematical
Finance 9, 1999;
H. Föllmer, A. Schied, Convex measures of risk and trading constraints. Finance &
Stochastics 4, 2000.

Core ideas:
1 The risk of a position X has to be quantified as the minimum capital which must be

added to X so that the position becomes acceptable (e.g. from the point of view of a
supervisory authority)

2 Diversification must be incentivated: subadditivity/convexity
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The setting

Take a measurable space (Ω,F), standing for possible scenarios. Note: no
probability measure is specified!

A financial position is modelled by a random variable X : Ω→ R: X(ω) is the
discounted value of the position at the end of a given period (liquidation time, as
before) in the scenario ω.

The space X of all possible positions is a linear subspace of measurable functions
on (Ω,F), which contains the constants.
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Monetary risk measures

A functional ρ : X → R is called monetary risk measure if it satisfies the following
properties:

1 no position is “infinitely good”: ρ(X) > −∞ for all X ∈ X ;
2 for every constant m ∈ R it holds ρ(m) < +∞;
3 monotonicity: if X ≤ Y (i.e., X(ω) ≤ Y (ω) for all ω ∈ Ω), it holds ρ(X) ≥ ρ(Y );
4 cash invariance: for every m ∈ R it holds ρ(X +m) = ρ(X)−m: if a capital m is

added to a position X, the risk of new position X +m is reduced by amount m.
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Acceptance sets

A set A ⊂ X is said to be an acceptance set if:
1 A ∩ {constant functions} 6= ∅: ∃m ∈ R such that having m is acceptable;
2 For all X ∈ X there exists m ∈ R such that X +m 6= A: no position is “infinitely

good”;
3 A is monotone in the sense that X ∈ A, Y ∈ X and Y ≥ X implies Y ∈ A.
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From acceptance sets to monetary risk measures and viceversa

Proposition
Let A ⊂ X be an acceptance set. Thus the functional ρA : X → R defined by

ρA(X) := inf{m ∈ R : X +m ∈ A}

is a monetary risk measure.

Proposition
Let a functional ρ : X → R be a monetary risk measure. Thus the set Aρ defined by

Aρ := {X ∈ X : ρ(X) ≤ 0}

is an acceptance set.
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Convex risk measures

Remember: diversification should not increase risk.

Definition
A monetary risk measure ρ is called a convex risk measure if for every λ ∈ [0, 1],
X,Y ∈ X it holds

ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ).

Proposition
A monetary risk measure is convex if and only if for every λ ∈ [0, 1], X,Y ∈ X it holds

ρ(λX + (1− λ)Y ) ≤ max(ρ(X), ρ(Y )).

Proposition
A monetary risk measure ρ is convex if and only if Aρ is a convex set.
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Coherent risk measures and subadditivity

Definition
A convex risk measure ρ is called coherent risk measure if it is positive homogenous, i.e., if for every λ ≥ 0,
X ∈ X it holds

ρ(λX) = λρ(X).

Proposition
A coherent risk measure is subadditive, i.e., for every X,Y ∈ X it holds

ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

Proposition
A monetary risk measure ρ is coherent if and only if Aρ is a convex cone.

Remark
Coherent risk measures have been criticized since the positive homegeneity property does not always hold in
practice, for example due to illiquidity effects. See among others:

H. Föllmer and A. Schied, Convex measures of risk and trading constraints. Finance and Stochastics,
2002, 6.4: 429-447

M. Frittelli, and E. Rosazza Gianin, Putting Order in Risk Measures, J.Bank. Finance, 2002, 26,
1473-1486

Andrea Mazzon Climate risk management in finance 29 / 69



1 Introduction to risk and climate risk

2 A first approach to risk measurement

3 Climate risk measurement under model uncertainty: motivation

4 Introduction to model uncertainty

5 Robust representation of convex risk measures
Axiomatic theory of risk measures
The concept of robust representation
Examples of risk measures with a robust representation

6 Certainty equivalents and optimization problems

7 Certainty equivalents and model uncertainty

8 A climate risk example
Introduction to the emission abatement problem
More or less abatement under model uncertainty?
Does the degree of model disagreement decrease under abatement? Empirical
evidence

Andrea Mazzon Climate risk management in finance 30 / 69



What about model uncertainty?

Note that for now we have not fixed any probability measure, so no model for our
risky financial position X.

On the other hand, no notions of robustness with respect to model uncertainty
have been specified.

This is what we want to do now.
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Definition
A risk measure ρ admits a robust representation if for every X ∈ X it holds

ρ(X) = sup
Q∈M

{
EQ[−X]− α(Q)

}
,

where

M = {probability measures Q on (Ω,F) such that EQ[X] is finite for every X ∈ X}.

The functional α :M→ R+ ∪ {+∞} is called penalty function.

Interpretation
The elements ofM can be interpreted as possible probabilistic models, which are
taken more or less “seriously” according to the size of the penalty α(Q).

The value ρ(X) is computed as the worst case expectation taken over all models
Q ∈M and penalized by α(Q).
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Robust representation for coherent measures

Proposition
A risk measure ρ satisfying the representation above is convex.

Proof
Let λ ∈ (0, 1), and suppose that ρ has the representation

ρ(X) = sup
Q∈M

{
EQ[−X]− α(Q)

}
,

with α :M→ R+ ∪ {+∞}. Then for every X,Y ∈ X and λ ∈ (0, 1) it holds

ρ(λX + (1− λ)Y ) = sup
Q∈M

{
EQ[−λX − (1− λ)Y ]− α(Q)

}
= sup
Q∈M

{
λEQ[−X] + (1− λ)EQ[−Y ]− λα(Q)− (1− λ)α(Q)

}
= sup
Q∈M

{
λ
(
EQ[−X]− α(Q)

)
+ (1− λ)

(
EQ[−Y ]− α(Q)

)}
≤ λ sup

Q∈M

{
EQ[−X]− α(Q)

}
+ (1− λ) sup

Q∈M

{
EQ[−Y ]− α(Q)

}
= λρ(X) + (1− λ)ρ(Y ).
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Proposition
A risk measure ρ which admits a robust representation is coherent if and only if
the penalty function α only takes the values 0 and∞, i.e.

ρ(X) = sup
Q∈Q

EQ[−X]

where Q = {Q ∈M : α(Q) = 0}.
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Existence of a robust representation for convex risk measures

We assume that X is the linear space of all bounded measurable functions on a
measurable space (Ω,F).

For this reason,M is now the set of all probability measures on (Ω,F).

We assume that Ω is a Polish space, i.e., a separable topological space admitting
a complete metric.

We also suppose F to be the Borel σ-algebra.

We denote by Cb(Ω) the subspace of X of bounded continuous functions on Ω.

Definition
A convex risk measure ρ on X is called tight if there exists an increasing sequence
K1 ⊂ K2 ⊂ · · · of compact subsets of Ω such that

ρ(λ1{Kn})↘ ρ(λ) for all λ ≥ 1.
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Existence of a robust representation for convex risk measures

Theorem
Let ρ be a convex risk measure on X . Then the following conditions are equivalent:

(i) ρ is tight;
(ii) ρ is continuous from below in Cb(Ω), i.e., if (Xn)n∈N is a sequence in Cb(Ω) such

that Xn ↗ X ∈ Cb(Ω), then ρ(Xn)↘ ρ(X).

If one of the two conditions above is satisfied, ρ has the robust representation

ρ(X) = sup
Q∈M

(
EQ[−X]− α(Q)

)
for a given penalty functional α.
If ρ is coherent and one of the two conditions above is satisfied, ρ has the robust
representation

ρ(X) = sup
Q∈Q

EQ[−X],

for a given subset Q ⊆M.

Andrea Mazzon Climate risk management in finance 36 / 69



1 Introduction to risk and climate risk

2 A first approach to risk measurement

3 Climate risk measurement under model uncertainty: motivation

4 Introduction to model uncertainty

5 Robust representation of convex risk measures
Axiomatic theory of risk measures
The concept of robust representation
Examples of risk measures with a robust representation

6 Certainty equivalents and optimization problems

7 Certainty equivalents and model uncertainty

8 A climate risk example
Introduction to the emission abatement problem
More or less abatement under model uncertainty?
Does the degree of model disagreement decrease under abatement? Empirical
evidence

Andrea Mazzon Climate risk management in finance 37 / 69



Remark
In the following examples a probability measure P is fixed in (Ω,F) and the linear
space X = L∞(Ω,F , P ) is considered. All risk measures are initially defined on X , but
have canonical extensions to larger spaces.
The expectation will be always taken with respect to P unless differently specified, i.e.

E[X] =

∫
Ω

XdP.

Note that since we consider bounded random variables, the setM introduced above is
the space of probability measures in (Ω,F).
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Value at Risk: no convex, no robust representation!

The Value at Risk at level λ is a monetary risk measure with acceptance set

Aλ = {X ∈ X : P (X < 0) ≤ λ}.

In terms of capital requirement:

V aRλ(X) = inf{m ∈ R : X +m ∈ Aλ}
= inf{m ∈ R : P (X +m < 0) ≤ λ}.

Note: Value at Risk is a positive homogenous monetary measure, but not convex!

It follows that not only Value at Risk does not reward diversification, but from the
proposition we have seen it also fails to have a robust representation.
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Average Value at Risk/Expected Shortfall

Definition
The Average Value at Risk at level λ ∈ (0, 1] for a position X is

AV aRλ(X) =
1

λ

∫ λ

0

V aRβ(X)dβ.

As opposed to Value at Risk, it takes into account extreme losses.
Since λ→ V aRλ is non-decreasing, it holds

AV aRλ(X) ≥ V aRλ(X) :

Average Value at Risk is more conservative with respect to Value at Risk.
It is a coherent risk measure with robust representation

AV aRλ(X) = sup
Q∈Qλ(P )

EQ[−X]

with

Qλ(P ) :=

{
Q ∈M, Q� P :

dQ

dP
≤ 1

λ

}
.
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Utility-based shortfall risk

Definition
A loss function is a convex, increasing and twice differentiable function ` : R→ R.

Definition
Consider a loss function ` and take r0 > infx∈R{`(x)}. The utility-based shortfall risk ρ
for a position X ∈ X is defined as

ρ(X) = inf{m : X +m ∈ A},

where
A := {X ∈ X : E[`(−X)] ≤ r0}.

Remark
Introduce the utility function u(x) := r0 − `(−x). We can write the acceptance set A as

A := {X ∈ X : E[u(X)] ≥ 0}.

This is why ρ is called “utility-based shortfall risk”.
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More on the utility-based shortfall risk

The acceptance set A is convex, so ρ is a convex risk measure.

If X has a continuous distribution and if ` is continuous, m = ρ(X) is the unique
solution to the equation

E[`(−X −m)] = r0.

This can be solved by numerical methods.

The risk measure ρ admits a robust representation

ρ(X) = sup
Q∈M1(P )

{EQ[−X]− α(Q)},

whereM1(P ) = {Q ∈M, Q� P} and

α(Q) = inf
λ>0

1

λ

(
r0 + E

[
`∗
(
λ
dQ

dP

)])
,

where `∗(z) := supx∈R{zx− `(x)} is the Fenchel-Legendre transform.
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Entropic risk measure

Definition
For a fixed probability measure P and a parameter γ > 0, the entropy penalty function
is defined as α(Q) := 1

γ
H(Q|P ), where

H(Q|P ) :=

{
EQ
[
ln dQ

dP

]
if Q� P

+∞ otherwise

Interpretation: the more a measure Q “diverges” from P , the more it gets penalized.

Definition
For a fixed probability measure P and a parameter γ > 0, the entropic risk measure for
a position X is defined by the robust representation with respect to the entropy
penalization function defined above:

eγ(X) := sup
Q∈M

{EQ[−X]− α(Q)}.
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More on the entropic risk measure

It can be seen that

H(Q|P ) = sup
X∈L∞(Ω,F,P )

{EQ[−X]− lnE[e−X ]}.

It follows the explicit representation

eγ(X) =
1

γ
lnE[e−γX ]. (1)

Define the loss function `(x) = eγx and the utility function u(x) = 1− e−γx.
Thus it holds

A = {X ∈ X|eγ(X) ≤ 0} = {X ∈ X|E[`(−X)] ≤ 1} = {X ∈ X|E[u(X)] ≥ 0}.

Then, eγ is a special case of the utility-based shortfall risk measure.

Also note that (1) can be written as

eγ(X) = `−1 (E [`(−X)])

for `(x) = eγx. This is known as certainty equivalent of `.
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Certainty equivalents

Consider a probability space (Ω,F , P ), and the space X := L∞(Ω,F , P ) of
bounded random variables in such a probability space.

We have seen that the entropic risk measure eγ can be written as

eγ(X) = `−1 (E [`(−X)])

for the loss function `(x) = eγx.

The expression above is the certainty equivalent for that specific loss function `.

Let us now follow a more general approach to certainty equivalents. Take a given
loss function `, i.e., a convex, increasing, twice differentiable function ` : R→ R,
and define the certainty equivalent ρ` of ` as

ρ`(X) := `−1 (E [`(−X)]) .

In terms of the utility function u`(x) = −`(−x),we can write ρ` as

ρ`(X) := −u−1
` (E [u`(X)]) .
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Risk measures as certainty equivalents

Definition of Quasi-linearity
A risk measure ρ : X → R is called quasi-linear if ρ(X) = ρ(Y ) implies

ρ (αX + (1− α)Y ) = ρ (αY + (1− α)X)

for all X,Y ∈ X and for all α ∈ (0, 1).

The following is a well known theorem which characterizes certainty equivalents.

Nagumo-Kolmogorov-de Finetti Theorem
Any functional ρ : X → R can be written in the form

ρ(X) := `−1 (E [`(−X)])

for some loss function ` : R→ R if and only if it satisfies the following properties:

monotonicity;

law invariance: ρ(X) = ρ(Y ) if X ∼ Y ;

constancy: ρ(m) = −m for any m ∈ R;

quasi-linearity.
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Optimization problems

Certainty equivalents are quite often used in order to define optimization
problems. One typically seeks to solve the minimization problem

min
X∈X̄

ρ`(X),

where X̄ is a given (admissible) subset of X , or

min
a∈A

ρ`(−X(a)), (2)

where A is a set of possible actions and where we denote by X(a) a random
variable depending on the action a ∈ A, i.e., X(a, ω) for ω ∈ Ω.

Intuitively, one wants to find an optimal position, or an optimal action, that
minimizes her/his risk measure, which is seen here as depending on the
expectation of future losses.

In our application to climate risk, we will consider an optimal emission abatement
problem which is close to (2) in its form.

For this reason, we focus more on problem (2) in the next section.
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Risk minimization under model uncertainty

In the previous section, we have fixed a probability measure. That is, if one wants
to solve the problem

min
a∈A

ρ`(X(a)) = min
a∈A

`−1 (E [`(−X(a))]) ,

still does this referring to the corresponding probability measure.

First idea: for some specific loss functions `, the associated certainty equivalent ρ`

is convex, and has a robust representation. So we are indirectly taking into
consideration also other measures.

Second idea: we could try to directly incorporate model uncertainty into the
optimization problem.

That is, directly include the set of possible probability measures into the problem.
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Decision forms and model uncertainty

As before, we identify uncertainty with a set P of possible probability measures on
a space (Ω,F).

In the climate risk setting, the set P may represent for example all the possible
probabilities for a catastrophic event such as the collapse of the Atlantic
meridional overturning circulation.

We introduce a subjective prior probability µ defined on the power set of P.

Following the approach of S. Cerreia-Vioglio et al. 1, one can define the
P -certainty equivalent

ρP,`(X) := `−1
(
EP [`(−X)]

)
for any P ∈ P, and embed problem (2) into the setting of model uncertainty by
defining the new risk-minimization problem

min
a∈A

∫
P
`
(
ρP,`(X(a))

)
dµ(P ).

1F. Maccheroni, M. Marinacci, and L. Montrucchio, Classical Subjective Expected Utility., Proceedings of the
National Academy of Sciences, 110, 6754-6759
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Induced predictive probability

Note that

min
a∈A

∫
P
`
(
ρP,`(X(a))

)
dµ(P ) = min

a∈A

∫
P
`
(
`−1

(
EP [`(−X(a))]

))
dµ(P ).

= min
a∈A

∫
P
EP [`(−X(a))] dµ(P )

= min
a∈A

∫
P

(∫
Ω

` (−X(a, ω)) dP (ω)

)
dµ(P )

= min
a∈A

∫
Ω

` (−X(a, ω)) dµ̄(ω),

where the predictive probability µ̄ ∈ P is defined by

µ̄(B) =

∫
P
P (B)dµ(P )

for B ∈ F , so that (formally)

dµ̄(ω) = µ̄(dω) =

∫
P
P (dω)dµ(P ) =

∫
P
dP (ω)dµ(P ).
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Back to the classical case?

We have seen that each prior µ ∈ P induces a predictive probability µ̄ ∈ P, by

µ̄(B) =

∫
P
P (B)dµ(P )

for B ∈ F , such that

min
a∈A

∫
P
`
(
ρP,`(X(a))

)
dµ(P ) = min

a∈A

∫
Ω

` (−X(a, ω)) dµ̄(ω).

But then, modulo a change of probability measure, we are back to the classical
setting!

Such a probability measure µ̄ basically aggregates all the different probability
measures, i.e., all the different models.
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Example: the first question of the Ellsberg paradox

Remember: we have an urn with 90 balls: 30 red, 60 black OR white.

We compare the expected utility of the two actions bet on red and bet on white.

Clearly, the probability to draw a red ball is P (red) = 1
3
.

About the white ball, we have model uncertainty. In particular,

P =

{
Pi, Pi (white) =

i

90
, i = 0, 1, . . . , 60

}
.

Suppose that every probability measure Pi ∈ P has subjective prior probability 1
61

:

µ(Pi) =
1

61
, i = 0, . . . , 60.

What about µ̄ then? We have

µ̄ (white) =
60∑
i=0

Pi (white)µ(Pi) =
1

61

0 + 1 + · · ·+ 59 + 60

90
=

1

61

60 · 61

2

1

90
=

1

3
.

So we should be neutral between betting on red or white. Evidence shows that
this is not the case. Again: we have to include ambiguity aversion! How?
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How to include ambiguity aversion in our formulation?

Remember that we formalized our risk minimization problem under model uncertainty as

min
a∈A

∫
P
`
(
ρ
P,`

(X(a))
)
dµ(P ) = min

a∈A

∫
P

EP [`(−X(a))] dµ(P ).

The simplification above makes this approach easily tractable.

But: basically we are using the same loss function ` (which we take convex in order to represent our
aversion to risk) also in order to deal with model uncertainty!

Doing so, we don’t really account for ambiguity aversion.

We want then to generalize the representation above by distinguishing such an attitude: we introduce
another loss function ˜̀ : R→ R and consider the problem

min
a∈A

∫
P

˜̀
(
ρ
P,`

(X(a))
)
dµ(P ) = min

a∈A

∫
P

˜̀◦ `−1
(
EP [`(−X(a))]

)
dµ(P )

Accordingly, we can introduce the ambiguity aversion-certainty equivalent

ρ
P,˜̀

(X) = ˜̀−1

(∫
P

˜̀
(
ρ
P,`

(X(a))
)
dµ(P )

)
= ˜̀−1

(∫
P

˜̀◦ `−1
(
EP [`(−X(a))]

)
dµ(P )

)
and define the optimization problem

min
a∈A

ρ
P,˜̀

(X(a)).

Ambiguity aversion corresponds to the convexity of the function φ := ˜̀◦ `−1.

In particular, φ is convex if and only if ˜̀ is more convex than ` - that is, if there exists a strictly increasing
and convex function g such that ˜̀= g ◦ `.
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A model for abatement’s level decisions

This section is based on the paper Managing catastrophic climate risks under
model uncertainty aversion, L. Berger, J. Emmerling, M Tavoni, Management
Science 63.3 (2017): 749-765.

The focus here is on emission abatement decisions taken from a decision maker.

We have two periods, today and the future. During the first period, the DM
chooses a level of emission abatement a which has (present) cost c(a). This
erodes the present wealth w1, which is therefore w1 − c(a).

In the future, there are two possible categories of states of the world. One is safe:
under this scenario, a (deterministic) wealth w2 is provided in the future.

In the second scenario, the environment is severely affected by a catastrophic
event (example: the collapse of the Atlantic meridional overturning circulation) that
gives rise to other unfavourable accidents in a set S. An event s ∈ S causes a
damage Ls, such that the future wealth becomes w2 − Ls, and occurs with
probability πs, conditional on the scenario taking place.

The probability that such a catastrophic event will occur depends on the level of
abatement a chosen in the first period.
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The introduction of model uncertainty: the probability of the catastrophic
event is unknown

Model uncertainty is introduced assuming that the probability of the catastrophic
event (as a function of a) is not known.

In particular, we introduce n models θ ∈ {1, . . . , n} and define the set

P = {Pθ(·)}θ∈{1,...,n},

where Pθ(a) is the probability of the catastrophic event according to the model
θ ∈ {1, . . . , n} if the abatement level a is chosen.

We suppose that the DM does not know which of the probabilities Pθ is the true or
the most accurate one, but can associate a subjective prior probability µ(θ), in the
notation of the previous section, to all of them.

In particular, we suppose that the DM gives subjective prior probability 0 ≤ qi ≤ 1
to the model θ = i, for every i = 1, . . . , n, where

n∑
i=1

qi = 1.
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The risk minimization problem under model uncertainty

The problem is choosing the optimal abatement level a taking into account the cost
c(a) on one side, and the probabilities Pθ(a), θ ∈ {1, . . . , n}, on the other side.

We can follow the approach of last section, with a slight difference: here the action
a ∈ A does not affect directly the future wealth w2 − Ls, s ∈ S, but the probability
that such losses occur.

Let L be the loss random variable, i.e., the random variable L such that L = Ls
with probability πs in the catastrophic scenario and L = 0 in the other one.

We can formulate the problem as

min
a∈A

(
`(c(a)− w1) + β

∫
P

˜̀
(
ρPθ,a,`(w2 − L)

)
dµ(Pθ)

)
,

where β ∈ (0, 1] is the discount factor of future costs and

ρPθ,a,`(w2 − L) := `−1
(
EPθ,a[`(L− w2)]

)
is a certainty equivalent taken with respect to the expectation under the model Pθ,
for some θ ∈ {1, . . . , n}, if the abatement level a ∈ A is chosen.
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The risk minimization problem under model uncertainty

Note that we have

EPθ,a[`(L− w2)] = Pθ(a)
∑
s∈S

`(Ls − w2) + (1− Pθ(a))`(−w2).

Therefore,∫
P

˜̀
(
ρ
Pθ,a,`(w2 − L)

)
dµ(Pθ) =

n∑
i=1

qiφ
(
EPθi ,a[`(L− w2)]

)

=

n∑
i=1

qiφ

Pθi (a)∑
s∈S

`(Ls − w2) + (1− Pθi (a))`(−w2)

 ,

with φ = ˜̀◦ `−1.

Thus, we can write the optimization problem under model uncertainty as

min
a∈A

`(c(a)− w1) + β

n∑
i=1

qiφ

Pθi (a)∑
s∈S

`(Ls − w2) + (1− Pθi (a))`(−w2)

,
with φ = ˜̀◦ `−1.

As before, model uncertainty aversion corresponds to the convexity of φ.
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A new concept: ambiguity prudence

The following definition is taken word by word from the paper Precautionary saving and
the notion of ambiguity prudence, L. Berger, Economics letters 123.2 (2014): 248-251,
where such a concept has been first formally introduced.

Definition
An agent is ambiguity prudent if the introduction of ambiguity through a
mean-preserving spread in the space of first order distributions of his future wealth
raises his optimal level of saving.

Note that ambiguity prudence differs from ambiguity aversion: it only refers to the
amount of money that an agent is willing to invest under or without ambiguity.
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The degree of model disagreement

Definition
For any set of probability functions Pθ(·)θ∈{1,2,...,n}, the degree of model disagreement
is defined by

σ2(a) := Varθ[Pθ(a)]

for any given level of abatement a.

Proposition

The degree of model disagreement σ2(a) is decreasing (increasing) in abatement if
and only if, for any given level of abatement a, it holds

Cov
(
Pθ(a),

∂Pθ(a)

∂a

)
≤ (≥)0.

Intuitively, the above proposition can be understood as follows:
Cov

(
Pθ(a), ∂Pθ(a)

∂a

)
≤ 0 means that the higher the probability Pθ(a), the smaller

the (negative!) derivative ∂Pθ(a)
∂a

.
That is, the most pessimistic models are also the ones for which the probability of
the catastrophic event decreases faster in the level of abatement.
That is, such probabilities converge for high levels of abatement.
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Main result

Definition
We call a classical subjective expected loss (CSEL) maximizer a DM that does not
show ambiguity aversion, i.e., whose preferences are represented by a function ˜̀= `.

Proposition
A DM exhibiting (strict) ambiguity prudence and ambiguity aversion always chooses to
abate (strictly) more than a CSEL maximizer if the degree of model disagreement
decreases or is constant in abatement.

The above proposition says that if higher abatement leads to a reduction in the
degree of model disagreement, a positive incentive is generated to abate more,
under ambiguity aversion and ambiguity prudence.

From what we have observed before, the degree of model disagreement
decreases in abatement if abatement decreases the probability of a catastrophe
more strongly in more pessimistic models.

Andrea Mazzon Climate risk management in finance 65 / 69



1 Introduction to risk and climate risk

2 A first approach to risk measurement

3 Climate risk measurement under model uncertainty: motivation

4 Introduction to model uncertainty

5 Robust representation of convex risk measures
Axiomatic theory of risk measures
The concept of robust representation
Examples of risk measures with a robust representation

6 Certainty equivalents and optimization problems

7 Certainty equivalents and model uncertainty

8 A climate risk example
Introduction to the emission abatement problem
More or less abatement under model uncertainty?
Does the degree of model disagreement decrease under abatement? Empirical
evidence

Andrea Mazzon Climate risk management in finance 66 / 69



The experiment

The study of Zickfeld et al.2 presents the results from interviews with 12 leading
climate scientists about the risk of a collapse of the Atlantic meridional overturning
circulation (AMOC) due to global warming.

Specifically, the authors collected the experts’ probabilities that a collapse of the
AMOC will occur or will be irreversibly triggered as a function of global mean
temperature increase realized by the year 2100.

Such probabilities are defined as functions of the change in global mean
temperature. Of course, the higher the change of the temperature, the higher the
probability.

In our model, the change in global mean temperature is a decreasing function of
the abatement.3 That is, the degree of model disagreement decreases under
abatement if it increases under the change of the temperature.

2K. Zickfeld, A. Levermann, M.G. Morgan, T. Kuhlbrodt, S. Rahmstorf, D.W. Keith, Expert judgements on the
response of the Atlantic meridional overturning circulation to climate change, Climatic Change, 82(3), 235-265

3Note: although the link between cumulative emissions and temperature increase has been shown to be
robustly described by a linear relationship (Matthews et al. 2009, IPCC 2013), the magnitude of the so-called
carbon-climate response describing this relationship remains actually uncertain.
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Results: the model disagreement increases with temperature increase

The following plot is taken from Zickfeld et al. It clearly shows a decrease in the
disagreement (i.e., in the model uncertainty) for lower temperatures, that is, in our
setting, for higher abatements.
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Thank you for your attention!

For any question write to

mazzon@math.lmu.de
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